Background
Dynamical anisotropic lattices
Charmonium at T=0
Charmonium at high temperature
Outlook

Charmonium spectral functions in two-flavour QCD

Jon-Ivar Skullerud

Trinity College Dublin,
TrinLat–Swansea Collaboration

13 May 2006

Outline

Background

Dynamical anisotropic lattices

Tuning parameters
Simulation details

Charmonium at T=0

Charmonium at high temperature

Free spectral functions
Previous results
New results
MEM systematics

Outlook

Background

- ▶ J/ψ suppression a probe of the quark–gluon plasma?
- Quenched lattice results indicate that S-waves survive well into the plasma phase
- Sequential charmonium suppression explains experimental results?
- Uncertainty about which potential to use in potential models
- How reliable are quenched lattice simulations?

Spectral functions

- contain information about the fate of hadrons in the medium, eg charmonium suppression
- can be used to extract transport coefficents
- ▶ $ρ_{\Gamma}(ω, \vec{p})$ related to euclidean correlator $G_{\Gamma}(τ, \vec{p})$ according to

$$G_{\Gamma}(\tau, \vec{p}) = \int \rho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega$$

$$K(\tau,\omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} = e^{\omega\tau} n_B(\omega) + e^{-\omega\tau} [1 + n_B(\omega)]$$

- ▶ an ill-posed problem requires a large number of time slices
- use Maximum Entropy Method to determine most likely $\rho(\omega)$

- ▶ A large number of points in time direction required
- ▶ For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- ▶ Far too expensive with isotropic lattices $a_s = a_t!$

- ▶ A large number of points in time direction required
- ▶ For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- ▶ Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

- ▶ A large number of points in time direction required
- ▶ For $T = 2T_c$, $\mathcal{O}(10)$ points $\implies a_t \sim 0.025$ fm
- ▶ Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

- ► Introduces 2 additional parameters
- Non-trivial tuning problem

Tuning parameters

▶ The two anisotropy parameters ξ_g and ξ_q are renormalised separately

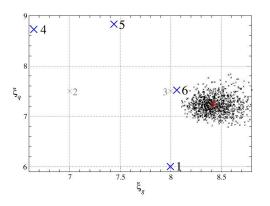
- ▶ The two anisotropy parameters ξ_g and ξ_q are renormalised separately
- ▶ In quenched simulations they can be tuned independently: first fix ξ_g , then tune ξ_q to the same anisotropy

- ▶ The two anisotropy parameters ξ_g and ξ_q are renormalised separately
- ▶ In quenched simulations they can be tuned independently: first fix ξ_g , then tune ξ_g to the same anisotropy
- In dynamical simulations the gauge fields depend on ξ_q^0 so this is no longer possible

- ▶ The two anisotropy parameters ξ_g and ξ_q are renormalised separately
- ▶ In quenched simulations they can be tuned independently: first fix ξ_g , then tune ξ_g to the same anisotropy
- In dynamical simulations the gauge fields depend on ξ_q^0 so this is no longer possible
- ► Need a simultaneous two-dimensional tuning procedure:

- ▶ The two anisotropy parameters ξ_g and ξ_q are renormalised separately
- ▶ In quenched simulations they can be tuned independently: first fix ξ_g , then tune ξ_g to the same anisotropy
- In dynamical simulations the gauge fields depend on ξ_q^0 so this is no longer possible
- ► Need a simultaneous two-dimensional tuning procedure:
 - Generate configs at 3 or more points in the (ξ_g^0, ξ_q^0) -plane
 - ▶ Determine ξ_g, ξ_q at these points
 - Assume that ξ_g, ξ_q are linear in ξ_g^0, ξ_q^0
 - \rightarrow intersection point where $\xi_g = \xi_q = \xi$

Tuning results



 $[\mathsf{hep}\text{-}\mathsf{lat}/0604021]$

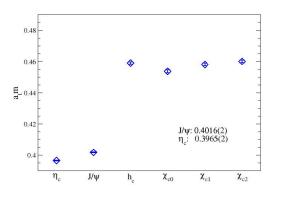
Point 6: $\xi_g = 5.90(3)$, $\xi_q = 6.21(10)$

Simulation details

Using an improved anisotropic gauge action (TSI3+1) and Wilson+Hamber–Wu fermion action with stout links.

Light quarks	$m_\pi/m_ ho$	0.54	
Anisotropy	ξ	6	
Lattice spacing	a_t	0.025fm	
	a_s	0.15 fm	
Lattice volume	N_s^3	8^3	$\rightarrow 12^3$
1/Temperature	N_t	16	$T\sim 2T_c$
		24	$T \sim 1.3 T_c$
		32	$T \sim T_c$
		80	$T\sim 0$

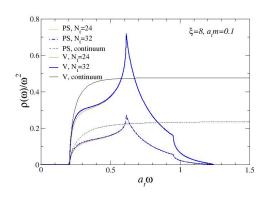
Charmonium spectrum at T=0



 $1S-1P \Longrightarrow a_t = 0.0251 \mathrm{fm},$ $a_s = 0.15 \mathrm{fm}.$ D-waves, hybrids, radial excitations underway [Juge et al, 2005]

Charmonium at high temperature

Free spectral functions

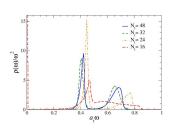


- ► Cusp at $a_t \omega \sim 0.6$ — observed in lattice data
- ► Correct artefacts using free lattice $\rho(\omega)$?
- Effects on primary peak at $a_t \omega \sim 0.4$?

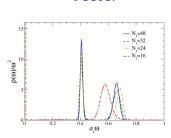
Charmonium spectral functions

Preliminary (2005), not fully tuned [Run 5]

Pseudoscalar

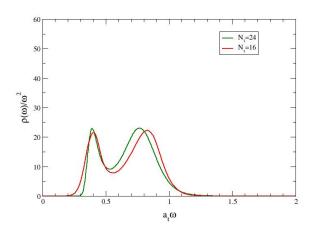


Vector

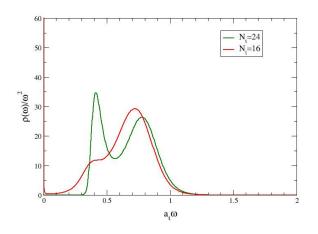


- ▶ Melting at $T \lesssim 2T_c$?
- ► No detailed study of systematics

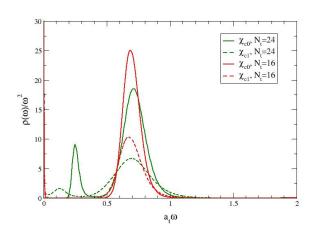
Vector channel



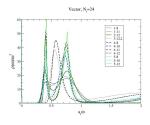
Pseudoscalar channel



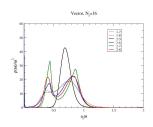
Scalar and axial channel



MEM systematics







- Stable when points near middle of lattice included
- ▶ $t = 1, 2 \rightarrow \text{peaks washed out}$
- ▶ No dependence on energy resolution
- Little dependence on dropping alternate time slices

Summary

- ▶ S-waves survive to $T \sim 2T_c$
- ▶ P-waves melt at $T < 1.3T_c$

Summary

- ▶ S-waves survive to $T \sim 2T_c$
- ▶ P-waves melt at $T < 1.3T_c$
- Systematic uncertainties:
 - $\sim 3\%$ from anisotropy tuning will perform simulations at fully tuned point
 - MEM systematics primarily statistics related?
 - → reconstruct correlators?
 - Dependence on default model?
 - ▶ Coarse lattice → doubler peak uncomfortably close
 - ▶ Poor determination of T_c

Summary

- ▶ S-waves survive to $T \sim 2T_c$
- ▶ P-waves melt at $T < 1.3T_c$
- Systematic uncertainties:
 - $\sim 3\%$ from anisotropy tuning will perform simulations at fully tuned point
 - MEM systematics primarily statistics related?
 - → reconstruct correlators?
 - Dependence on default model?
 - Coarse lattice → doubler peak uncomfortably close
 - Poor determination of T_c
- $ightharpoonup N_t = 32$ and 80 data underway

Outlook

- ▶ Higher statistics \rightarrow resolve ψ' ?
- ▶ Detailed temperature scan?
- $ightharpoonup N_s = 12$ simulations underway

- Non-zero momentum
- Light hadrons
- ► bb̄

